1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
use core::cmp; use core::intrinsics::assume; use core::marker::{PhantomData, PhantomPinned}; use core::mem; use core::ptr; use core::sync::atomic::{self, AtomicPtr, AtomicUsize}; use core::sync::atomic::Ordering::{Acquire, Relaxed, Release, SeqCst}; use core::usize; use crate::block::{Block, Layout}; use crate::alloc::{Heap, HeapError}; /// Pointer bit flag indicating a temporarily frozen list node. const FREEZE_FLAG: usize = 0x1; /// Pointer bit flag indicating a logically deleted list node. const REMOVE_FLAG: usize = 0x2; /// Bit mask that clears the freeze and remove flags from a pointer. const ADDR_MASK: usize = !0x3; /// Bit flag indicating a list node that is logically merged with its successor. const MERGE_FLAG: usize = 0x4; /// Bit flag indicating a logically split list node; the high order bits of /// the status field hold the extent aligned split offset. const SPLIT_FLAG: usize = 0x8; /// Bit mask that clears the freeze, remove, merge, and split flags from a status value. const SIZE_MASK: usize = !0xF; /// Power-of-two base address alignment of an extent. const EXTENT_ALIGN: usize = mem::align_of::<ExtentNode>(); /// Bit mask that rounds an address within a free extent header down to the /// base address of the extent. const EXTENT_ADDR_MASK: usize = !(EXTENT_ALIGN - 1); /// Maximum number of levels in the free extent skip list. const MAX_LEVEL: usize = 32; /// Reference counted smart pointer to an `ExtentList`. pub struct AddrSpace<'a> { ptr: *mut ExtentList<'a>, size: usize, } /// Lock-free allocator of page-aligned memory extents from some address range. #[repr(C, align(4096))] pub struct ExtentList<'a> { /// Size in bytes of this extent; always zero for the head extent. zero: usize, /// Insertion status of this slip list. status: AtomicUsize, /// Number of references to this extent. refcount: AtomicUsize, /// Skip list of free extents, ordered by ascending address. addr_list: AddrList, /// Skip list of free extents, ordered by ascending size, /// then ascending address. size_list: SizeList, /// Number of bytes in the address space, including the head extent. size: AtomicUsize, /// Number of live allocations in the address space. live: AtomicUsize, /// Number of currently allocated bytes in the address space. used: AtomicUsize, /// Lifetime of the address space in which this extent list resides. lifetime: PhantomData<&'a ()>, /// Pin to the base address of the head extent. pinned: PhantomPinned, } /// Header embedded within a free memory extent, with skip list nodes for the /// address-ordered free extent list, and the size-ordered free extent list. /// Transmutable from an `ExtentList`. #[repr(C, align(4096))] struct ExtentNode { /// Size in bytes of the extent, including this header. size: usize, /// Insertion status of this slip list node. status: AtomicUsize, /// Number of references to this extent. refcount: AtomicUsize, /// Skip list node linking this extent to subsequent free extents, /// ordered by ascending address. addr_node: AddrNode, /// Skip list node linking this extent to subsequent free extents, /// ordered by ascending size, then ascending address. size_node: SizeNode, /// Pin to the base address of the free extent. pinned: PhantomPinned, } /// Base address of a free extent, used to order the address skip list. type AddrKey = usize; /// Lock-free sorted skip list of free extents, ordered by ascending address. #[repr(C)] struct AddrList { /// Pseudo skip list node whose address is less than all valid extent addresses. head: AddrNode, } /// Lock-free sorted skip list node for a skip list of free extents, ordered by /// ascending address. The base address of the extent in which a node resides /// is obtained by rounding down the address of the node to the extent alignment. #[repr(C)] struct AddrNode { /// State of the pseudo-random number generator used to select the heights /// of inserted skip list nodes; used only by `AddrList` head nodes. seed: AtomicUsize, /// Tower of forward-pointing list links, with `height` valid levels. levels: [AddrLink; MAX_LEVEL], } /// Reference counted smart pointer to an `AddrNode`; uses the `refcount` field /// of the extent in which the pointed-to node resides. struct AddrNodeRef { ptr: *mut AddrNode, } /// Lock-free sorted skip list link for given level of a skip list of free /// extents, ordered by ascending address. The root level of the node in which /// a link resides is obtained by decrementing the link pointer by its level in /// the skip list. The base address of the extent in which a link resides is /// obtained by rounding down the address of the link to the extent alignment. #[repr(C)] struct AddrLink { /// Pointer to the next link in the list, possibly tagged with a freeze or /// remove flag--but never both. Zero indicates the end of the list. succ: AtomicUsize, /// Back pointer to the predecessor link in the level list, whose successor /// points to this link, with its freeze bit set so that it cannot be marked /// while `back` points to it. Non-zero only during removal. back: AtomicPtr<AddrLink>, /// Pin to level in `AddrNode` tower. pinned: PhantomPinned, } /// Reference counted smart pointer to an `AddrLink`; uses the `refcount` field /// of the extent in which the pointed-to link resides. struct AddrLinkRef { ptr: *mut AddrLink, } /// Size and base address of a free extent, used to order the size skip list. type SizeKey = (usize, usize); /// Lock-free sorted skip list of free extents, ordered by ascending size, then /// ascending address. #[repr(C)] struct SizeList { /// Pseudo skip list node whose size is less than all valid extent sizes. head: SizeNode, } /// Lock-free sorted skip list node for a skip list of free extents, ordered by /// ascending size, then ascending address. The base address of the extent in /// which a node resides is obtained by rounding down the address of the node /// to the extent alignment. #[repr(C)] struct SizeNode { /// State of the pseudo-random number generator used to select the heights /// of inserted skip list nodes; used only by `SizeList` head nodes. seed: AtomicUsize, /// Tower of forward-pointing list links, with `height` valid levels. levels: [SizeLink; MAX_LEVEL], } /// Reference counted smart pointer to a `SizeNode`; uses the `refcount` field /// of the extent in which the pointed-to node resides. struct SizeNodeRef { ptr: *mut SizeNode, } /// Lock-free sorted skip list link for given level of a skip list of free /// extents, ordered by ascending size, then ascending address. The root level /// of the node in which a link resides is obtained by decrementing the link /// pointer by its level in the skip list. The base address of the extent in /// which a link resides is obtained by rounding down the address of the link /// to the extent alignment. #[repr(C)] struct SizeLink { /// Pointer to the next link in the list, possibly tagged with a freeze or /// remove flag--but never both. Zero indicates the end of the list. succ: AtomicUsize, /// Back pointer to the predecessor link in the level list, whose successor /// points to this link, with its freeze bit set so that it cannot be marked /// while `back` points to it. Non-zero only during removal. back: AtomicPtr<SizeLink>, /// Pin to level in `AddrNode` tower. pinned: PhantomPinned, } /// Reference counted smart pointer to a `SizeLink`; uses the `refcount` field /// of the extent in which the pointed-to link resides. struct SizeLinkRef { ptr: *mut SizeLink, } #[macro_export] macro_rules! addr_space { // pub heap $name = [$size]; ($(#[$attr:meta])* pub heap $name:ident = [$size:expr];) => ( #[repr(align(4096))] struct __Heap([u8; $size]); static mut __HEAP: __Heap = __Heap([0; $size]); $(#[$attr])* pub static $name: $crate::alloc::AddrSpace<'static> = unsafe { $crate::alloc::AddrSpace::from_raw(&__HEAP as *const __Heap as *mut u8, $size) }; ); } unsafe impl<'a> Send for AddrSpace<'a> { } unsafe impl<'a> Sync for AddrSpace<'a> { } impl<'a> AddrSpace<'a> { #[inline] pub const unsafe fn from_raw(ptr: *mut u8, size: usize) -> AddrSpace<'a> { AddrSpace { ptr: ptr as *mut ExtentList, size: size, } } #[inline] unsafe fn extent(&self) -> *mut ExtentNode { self.ptr as *mut ExtentNode } /// Returns the total number of bytes in this address space. #[inline] pub fn size(&self) -> usize { self.size } /// Returns the number of live allocations from this address space. #[inline] pub fn live(&self) -> usize { unsafe { (*self.ptr).live() } } /// Returns the number of bytes currently allocated from this address space. #[inline] pub fn used(&self) -> usize { unsafe { (*self.ptr).used() } } } impl<'a> Heap<'a> for AddrSpace<'a> { unsafe fn alloc(&self, layout: Layout) -> Result<Block<'a>, HeapError> { (*self.ptr).grow(self.size); (*self.ptr).alloc(layout) } unsafe fn dealloc(&self, block: Block<'a>) -> usize { (*self.ptr).grow(self.size); (*self.ptr).dealloc(block) } } impl<'a> Clone for AddrSpace<'a> { fn clone(&self) -> AddrSpace<'a> { unsafe { self.extent().retain(); AddrSpace::from_raw(self.ptr as *mut u8, self.size) } } } impl<'a> Drop for AddrSpace<'a> { fn drop(&mut self) { unsafe { self.extent().release(); } } } impl<'a> ExtentList<'a> { /// Returns the total number of bytes in this address space. #[inline] pub fn size(&self) -> usize { self.size.load(Relaxed) } /// Returns the number of live allocations from this address space. #[inline] pub fn live(&self) -> usize { self.live.load(Relaxed) } /// Returns the number of bytes currently allocated from this address space. #[inline] pub fn used(&self) -> usize { self.used.load(Relaxed) } /// Extends this address space to `new_size` bytes in length by inserting a /// free extent for the delta between the current size and the new size. pub unsafe fn grow(&self, new_size: usize) { // Get the current size of the address space; synchronized by subsequent CAS. let mut old_size = self.size.load(Relaxed); // The address space must be large enough to hold the head extent. let mut min_size; // Loop until the address space has been resized. loop { // Check if the address space is already the desired size. if old_size == new_size { return; } // Exclude the head extent from the growable range. min_size = cmp::max(EXTENT_ALIGN, old_size); // Ensure that the new address space size is extent aligned. assert!(new_size % EXTENT_ALIGN == 0); // Make sure there's room for a complete extent. assert!(min_size + EXTENT_ALIGN <= new_size); // Try to grow the address space, synchronizing with concurrent // grow operations. match self.size.compare_exchange(old_size, new_size, SeqCst, Relaxed) { // CAS succeeded; incorporate the new extent. Ok(_) => break, // CAS failed; update the current address space size and try again. Err(size) => old_size = size, } } // Get a pointer to the new extent. let extent = (self as *const ExtentList<'a> as usize).wrapping_add(min_size) as *mut ExtentNode; // Compute the size of the new extent as the delta between the old and // new address space sizes. let size = new_size.wrapping_sub(min_size); // Insert the extent into the free extent skip lists. self.insert(extent, size); } /// Inserts an extent into the free extent skip lists, without updating /// allocation accounting information. #[inline] unsafe fn insert(&self, extent: *mut ExtentNode, size: usize) { // Initialize the size of the free extent. ptr::write(&mut (*extent).size, size); // Initialize two references to the free extent, one for the address // skip list, and one for the size skip list. ptr::write(&mut (*extent).refcount, AtomicUsize::new(2)); // Get a reference to the free extent's address skip list node. let addr_node = AddrNodeRef::from_raw(&mut (*extent).addr_node); // Get a reference to the free extent's size skip list node. let size_node = SizeNodeRef::from_raw(&mut (*extent).size_node); // Insert the free extent into the size-ordered skip list. self.size_list.insert(size_node); // Insert the free extent into the address-ordered skip list; // linearization point for extent insertion. self.addr_list.insert(addr_node); } } impl<'a> Heap<'a> for ExtentList<'a> { unsafe fn alloc(&self, layout: Layout) -> Result<Block<'a>, HeapError> { // Get the requested allocation size. let size = layout.size(); // Check if this is a zero-sized allocation. if size == 0 { // Return the zero-sized block. return Ok(Block::empty()); } // Align the allocation size to the extent alignment. let size = size.wrapping_add(EXTENT_ALIGN).wrapping_sub(1) & !EXTENT_ALIGN.wrapping_sub(1); // Compute the greaters lower bound of the desired allocation size. let size_key = (size.wrapping_sub(1), usize::MAX); // Loop until a suitable extent is allocated. loop { // Remove the first suitable extent from the size skip list; // linearization point for allocation attempt. let size_link = self.size_list.take_next(size_key); // Check if no suitable extent was found. if size_link.is_nil() { // Out of memory. return Err(HeapError::OutOfMemory); } // Get the address of the removed extent. let addr = size_link.addr(); // Drop the reference to the removed link in the size list to // reduce latency with concurrent allocations. mem::drop(size_link); // Remove the extent from the address skip list; linearization // point for allocation completion. let addr_link = self.addr_list.remove(addr, addr.wrapping_sub(1)); // Check if removal from the address skip list failed. if addr_link.is_nil() { // Extent concurrently merged with its predecessor; try again. continue; } // Drop the reference to the address skip link, converting it to an // uncounted pointer to the removed extent. let extent = addr_link.into_extent(); // Wait for all remaining references to the extent drop. extent.await_release(); // Compute the difference between the allocated extent size and the // requested allocation size. let excess_size = (*extent).size.wrapping_sub(size); // Check if the allocated extent can be split in two, and an extent // containing the excess bytes re-inserted into the free lists. if excess_size != 0 { // Ensure that the excess extent is properly aligned. assert!(excess_size % EXTENT_ALIGN == 0); // Get a pointer to the excess extent. let excess_extent = (extent as usize).wrapping_add(size) as *mut ExtentNode; // Insert the excess extent back into the free skip lists. self.insert(excess_extent, excess_size); } // Increment the number of live allocations in the address space. self.live.fetch_add(1, Relaxed); // Increment the number of allocated bytes in the address space. self.used.fetch_add(size, Relaxed); // Return the raw memory block of the newly allocated extent. return Ok(Block::from_raw_parts(extent as *mut u8, size)); } } unsafe fn dealloc(&self, block: Block<'a>) -> usize { // Get the size of the memory block to deallocate. let size = block.size(); // Check if this is a zero-sized deallocation. if size == 0 { // Nothing to deallocate. return 0; } // Transmute the memory block into a free extent. let extent = block.into_raw() as *mut ExtentNode; // Insert the extent into the free extent skip lists. self.insert(extent, size); // Return the size of the freed extent. size } } impl ExtentNode { /// Returns `true` if this is the `nil` extent. #[inline] fn is_nil(self: *mut ExtentNode) -> bool { self.is_null() } /// Increments the reference count of this extent. #[inline] unsafe fn retain(self: *mut ExtentNode) { // Check if this is the nil extent. if self.is_nil() { // The nil extent has no reference count. return; } // Increment the reference count of this extent, synchronizing with // reference releases. let old_refcount = (*self).refcount.fetch_add(1, Acquire); if old_refcount == 0 { panic!(); } // Check for reference count overflow. if old_refcount == usize::MAX { panic!("refcount overflow"); } } /// Decremements the reference count of this extent, returning `true` if /// this causes the reference count to drop to zero. #[inline] unsafe fn release(self: *mut ExtentNode) -> bool { // Check if this is the nil extent. if self.is_nil() { // The nil extent has no reference count. return false; } // Decrement the reference count of this extent, synchronizing with // reference count acquires. let old_refcount = (*self).refcount.fetch_sub(1, Release); if old_refcount == 0 { panic!(); } // Return true if the reference count dropped to zero. old_refcount == 1 } /// Busy waits until all references to this extent have been released. #[inline] unsafe fn await_release(self: *mut ExtentNode) { // Loop until all references to this extent have been released. loop { // Load this extent's reference count, synchronizing with reference // count releases. let refcount = (*self).refcount.load(Acquire); // Check if the reference count has dropped to zero. if refcount == 0 { // The extent is no longer aliased. break; } // Busy wait before trying again. atomic::spin_loop_hint(); } } ///// Merges this extent with its successor. //#[inline] //unsafe fn merge(self: *mut ExtentNode) { // // Load the status field of the extent in which this link resides; // // synchronized by subsequent CAS. // let mut old_status = (*self).status.load(Relaxed); // // Loop until the merge flag is set. // loop { // // Check if the extent is flagged for removal, merging, or splitting. // if old_status & REMOVE_FLAG != 0 { // // Can't merge logically removed extent. // return; // } else if old_status & MERGE_FLAG != 0 { // // Help merge the extent with its successor. // self.help_merge(); // } else if old_status & SPLIT_FLAG != 0 { // // Help split the extent at the size boundary encoded in the // // high order bits of the status field. // self.help_split(old_status & SIZE_MASK); // } else { // // Set the merge flag on the status field. // let new_status = old_status | MERGE_FLAG; // // Try to update the status field, synchronizing with other // // list mutations; linearization point for extent merging. // match (*self).status.compare_exchange(old_status, new_status, SeqCst, Relaxed) { // // CAS succeeded. // Ok(_) => break, // // CAS failed; try again with the latest status. // Err(status) => old_status = status, // } // } // } //} ///// Splits this extent at the `size` byte boundary. //#[inline] //unsafe fn split(self: *mut ExtentNode, size: usize) { // // TODO //} /// Helps merge this extent with its successor. #[inline] unsafe fn help_merge(self: *mut ExtentNode) { // TODO } /// Helps split this extent in two at the `size` byte boundary. #[inline] unsafe fn help_split(self: *mut ExtentNode, size: usize) { // Get a pointer to the split point of the extent. let _next = (self as usize).wrapping_add(size) as *mut ExtentNode; // Insert the excess extent back into the free skip lists. //(*self).size_list.insert(next, size); } } impl AddrList { /// Returns a pointer to the extent in which this list resides. #[inline] unsafe fn extent(&self) -> *mut ExtentNode { (self as *const AddrList as usize & EXTENT_ADDR_MASK) as *mut ExtentNode } /// Inserts a `node` into this skip list, returning a reference to the base /// link of the inserted node, or `nil` if the node was already found in /// the list. unsafe fn insert(&self, node: AddrNodeRef) -> AddrLinkRef { // Find a pair of references to consecutive base links whose extent // keys bound the key of the extent of the inserted node. The returned // next reference will be nil if the key of the extent of the inserted // node is greater than the keys of the extents of all links in the // base level list. let (mut prev, mut next) = self.search_to_level(node.key(), 0); // Check if this node is already in the list. if prev.key() == node.key() { panic!("duplicate node"); } // Generate a random height for the inserted node. let height = self.random_height(); // Get a pointer to the link at the base level of the inserted node, // stealing the given node's reference. let base = AddrLinkRef::from_raw((*node.ptr).levels.as_ptr() as *mut AddrLink); // Discard the node, whose reference we stole. mem::forget(node); // Start with the base link. let mut link = base.clone(); // Of the base level list. let mut level = 0; // Loop until `height` link levels have been inserted into the skip list. loop { // Insert this node's link for the current level into the level list, // between the links that bound the address of the extent of the // inserted node.. let (new_prev, result) = link.clone().insert(prev, next, level); // Update to the latest predecessor link. prev = new_prev; // Check if the insert failed due to a duplicate base link. if result.is_nil() && level == 0 { // Propagate the insert failure. return AddrLinkRef::nil(); } // Check if the inserted base link has already become superfluous. if (*base.ptr).succ.load(SeqCst) & REMOVE_FLAG != 0 { // Check if the current link was inserted, and isn't the base link. if result.ptr == link.ptr && link.ptr != base.ptr { // If so, remove the superfluous link. link.remove(prev, level); } // Return the superfluous base link. return base; } // Increment the link level. level = level.wrapping_add(1); // Check if the new link level exceeds the chosen height for the // inserted node. if level > height { // All desired levels have been inserted; return the base link. return base; } // Ascend to the next higher level link. link.ascend(); // Find a pair of pointers to consecutive links in the current // level whose extent addresses bound the address of the extent of // the inserted node. The returned next pointer will be null if the // address of the extent of the inserted node is greater than the // addresses of the extents of all links in the current level list. let (new_prev, new_next) = self.search_to_level(link.key(), level); // Recurse into the lower bound link of the current level list. prev = new_prev; // And the upper bound link of the current level list. next = new_next; } } /// Removes the node with the given `key`, and greatest lower bound, from /// this skip list, returning a reference to the removed node's base link, /// or `nil` if no node with the given `key` was found in the list. unsafe fn remove(&self, key: AddrKey, glb: AddrKey) -> AddrLinkRef { // Find a pair consecutive base link references whose extent keys bound // the `key` of the node to remove, and its greatest lower bound key. let (prev, del) = self.search_to_level(glb, 0); // Check if the upper bound link doesn't match the node to remove, // indicating that the node is not present in the list. if del.key() != key { // Return nil to indicate that the node was not found. return AddrLinkRef::nil(); } // Load the status field of the extent in which this link resides; // synchronized by subsequent CAS. let mut old_status = (*self.extent()).status.load(Relaxed); // Loop until the remove flag is set. loop { // Set the remove flag on the status field. let new_status = old_status | REMOVE_FLAG; // Try to update the status field of the extent in which this link resides, // synchronizing with other list mutations; linearization point for skip // list removal. match (*self.extent()).status.compare_exchange(old_status, new_status, SeqCst, Relaxed) { // CAS succeeded. Ok(_) => break, // CAS failed; try again with the latest status. Err(status) => old_status = status, } } // Remove the node from the base level list. let result = del.remove(prev, 0); // Check if the removal of the link from the base level list failed. if result.is_nil() { // Return nil to indicate that the node was already removed. return AddrLinkRef::nil(); } // Delete the links at the higher levels of the node. self.search_to_level(key, 1); // Return a pointer to the base link of the successfully removed node. return result; } /// Returns two consecutive links in the `target_level` list, with the /// extent of the first link having a key less than or equal to the search /// `key`, and the extent of the second link having a key strictly greater /// than the search `key`. Returns `nil` for the second link if the search /// `key` is greater than or equal to the keys of all nodes in the list. unsafe fn search_to_level(&self, key: AddrKey, target_level: usize) -> (AddrLinkRef, AddrLinkRef) { // Get the head link and level of the highest level non-empty list // whose level is greater than or equal to the target level. let (mut link, mut level) = self.find_start(target_level); // Search the skip list down to the target level. loop { // Search for bounding links on the current level. let (prev, next) = link.search_right(key, level); // Step into the predecessor link on the current level. link = prev; // Check if we're still above the target level. if level > target_level { // Descend to the next lower level link. link.descend(); // Decrement the level index. level = level.wrapping_sub(1); } else { // Return bounding links on the target level. return (link, next); } } } /// Returns the head link and level of the highest level non-empty list /// whose level is greater than or equal to the minimum start `level`. #[inline] unsafe fn find_start(&self, mut level: usize) -> (AddrLinkRef, usize) { // Get a pointer to the head link for the minimum start level. let mut link = self.head.levels.as_ptr().wrapping_add(level) as *mut AddrLink; // Loop until the next higher level list is empty, or the top level is reached. loop { // Get a pointer to the head link for the next highest level list. let up_link = link.wrapping_add(1); // Load the address of the next link in the next highest level list, // synchronizing with level list mutations. let up_next = ((*up_link).succ.load(SeqCst) & ADDR_MASK) as *mut AddrLink; // Check if the next highest level list is empty. if up_next.is_null() { // The current level is the highest non-empty level. break; } // Step to the head link of the next highest level list. link = up_link; // Increment the level index. level = level.wrapping_add(1); // Check if the new level is as high as the skip list goes. if level == MAX_LEVEL { // Can't go any higher. break; } } // Acquire a reference the head extent in which this list resides. (*self.extent()).refcount.fetch_add(1, Acquire); // Return the head link and level of the highest level non-empty list. (AddrLinkRef::from_raw(link), level) } /// Returns a pseudo-random skip node height, ranging from 0 to 31, inclusive. unsafe fn random_height(&self) -> usize { // Load the current PRNG state. let mut old_seed = self.head.seed.load(Relaxed); // Loop until a new pseudo-random number is generated. loop { // Compute the next pseudo-random number, using a simple xorshit PRNG. let mut new_seed = old_seed ^ old_seed << 13; new_seed = new_seed ^ new_seed >> 17; new_seed = new_seed ^ new_seed << 5; // Try to update the PRNG state. match self.head.seed.compare_exchange_weak(old_seed, new_seed, Relaxed, Relaxed) { // CAS succeeded. Ok(_) => { // Truncate the pseudo-random number to 32 bits. let seed = new_seed as u32; // Check if the highest and/or lowest bits are unset. if seed & 0x80000001 != 0x80000001 { // Return the highest probability skip node height. return 0; } // Return the number of consecutive trailing zeros, between 1 and 31. return (seed & 0xFFFFFFFE).trailing_zeros() as usize }, // CAS failed; update the PRNG state and try again. Err(seed) => old_seed = seed, } } } } impl AddrNodeRef { /// Returns a new reference to a skip list node from a raw pointer. #[inline] unsafe fn from_raw(ptr: *mut AddrNode) -> AddrNodeRef { AddrNodeRef { ptr: ptr } } /// Returns `true` if this node is the `nil` end of list sentinel. #[inline] fn is_nil(&self) -> bool { self.ptr.is_null() } /// Returns a pointer to the extent in which this node resides. #[inline] fn extent(&self) -> *mut ExtentNode { (self.ptr as usize & EXTENT_ADDR_MASK) as *mut ExtentNode } /// Returns the address of the extent in which this node resides. #[inline] fn addr(&self) -> usize { if !self.is_nil() { self.extent() as usize } else { usize::MAX } } /// Returns the sort key used to order this node. #[inline] fn key(&self) -> AddrKey { self.addr() } } impl Clone for AddrNodeRef { #[inline] fn clone(&self) -> AddrNodeRef { unsafe { self.extent().retain(); AddrNodeRef::from_raw(self.ptr) } } } impl Drop for AddrNodeRef { #[inline] fn drop(&mut self) { unsafe { self.extent().release(); } } } impl AddrLinkRef { /// Returns the end of list sentinel. #[inline] fn nil() -> AddrLinkRef { AddrLinkRef { ptr: ptr::null_mut() } } /// Returns a new reference to a skip list link from a raw pointer. #[inline] unsafe fn from_raw(ptr: *mut AddrLink) -> AddrLinkRef { AddrLinkRef { ptr: ptr } } /// Returns `true` if this is the `nil` end of list sentinel. #[inline] fn is_nil(&self) -> bool { self.ptr.is_null() } /// Returns a pointer to the extent in which this link resides. #[inline] fn extent(&self) -> *mut ExtentNode { (self.ptr as usize & EXTENT_ADDR_MASK) as *mut ExtentNode } /// Returns the address of the extent in which this link resides. #[inline] fn addr(&self) -> usize { if !self.is_nil() { self.extent() as usize } else { usize::MAX } } /// Returns the sort key used to order this link. #[inline] fn key(&self) -> AddrKey { self.addr() } /// Returns the greatest key that precedes this link's key. #[inline] fn glb(&self) -> AddrKey { self.addr().wrapping_sub(1) } /// Updates this reference to point to the node's next higher level link. #[inline] unsafe fn ascend(&mut self) { self.ptr = self.ptr.wrapping_add(1); } /// Updates this reference to point to the node's next lower level link. #[inline] unsafe fn descend(&mut self) { self.ptr = self.ptr.wrapping_sub(1); } /// Returns `true` if the node in which this link resides is marked for removal. #[inline] unsafe fn is_superfluous(&self, level: usize) -> bool { !self.is_nil() && (*self.ptr.wrapping_sub(level)).succ.load(SeqCst) & REMOVE_FLAG != 0 } /// Returns the insertion status of the node in which this link resides. #[inline] unsafe fn status(&self) -> usize { if !self.is_nil() { (*self.extent()).status.load(Acquire) } else { 0 } } /// Returns a reference to the successor of this link, incrementing its /// reference count. #[inline] unsafe fn acquire_next(&self) -> AddrLinkRef { // Loop until a reference is acquired to the successor of this link. loop { // Load the address of the successor to this link in the level list, // synchronizing with level list mutations. let next = AddrLinkRef::from_raw(((*self.ptr).succ.load(SeqCst) & ADDR_MASK) as *mut AddrLink); // Check if the next link is the end of list sentinel. if next.is_nil() { // Return a reference to the end of list sentinel. return next; } // Increment the reference count of the extent of the next link, // synchronizing with reference releases. (*next.extent()).refcount.fetch_add(1, Acquire); // Check if the successor to this link remains unchanged, // synchronizing with level list mutations. if next.ptr == ((*self.ptr).succ.load(SeqCst) & ADDR_MASK) as *mut AddrLink { // Return the acquired reference to the next link. return next; } else { // Successor changed; release the reference we acquired to the // previous successor, and try again. mem::drop(next); } } } /// Returns a reference to the predecessor of this marked link, /// incrementing its reference count. #[inline] unsafe fn acquire_back(&self) -> AddrLinkRef { // Loop until a reference is acquired to the predecessor of this link. loop { // Load the address of the predecessor to this link in the level list, // synchronizing with back reference releases. let prev = AddrLinkRef::from_raw((*self.ptr).back.load(Acquire)); // The back pointer must not be null. debug_assert!(!prev.ptr.is_null()); // The back pointer cannot be null. assume(!prev.ptr.is_null()); // Increment the reference count of the extent of the prev link, // synchronizing with reference releases. (*prev.extent()).refcount.fetch_add(1, Acquire); // Check if the predecessor to this link remains unchanged, // synchronizing with back reference releases. if prev.ptr == (*self.ptr).back.load(Acquire) { // Return the acquired reference to the prev link. return prev; } else { // Successor changed; release the reference we acquired to the // previous predecessor, and try again. mem::drop(prev); } } } /// Returns two consecutive links in the list at `level`, with the extent /// of the first link having a key less than or equal to the search key, /// and the extent of the second link having a key strictly greater than /// the search `key`. Assumes that the address of the extent of this link /// precedes the search address. unsafe fn search_right(mut self, key: AddrKey, level: usize) -> (AddrLinkRef, AddrLinkRef) { // Acquire a reference to the next link in the level list. let mut next = self.acquire_next(); // Loop while the key of the extent of the next link does not exceed the search key. while !next.is_nil() && next.key() <= key { // Load the insertion status of the extent in which the next link resides. let status = next.status(); // Check if the extent is flagged for merging or splitting. if status & MERGE_FLAG != 0 { // Help merge the extent in which this link resides with its successor. next.extent().help_merge(); } else if status & SPLIT_FLAG != 0 { // Help split the extent in which this link resides at the size boundary // enocded in the high order bits of the status field. next.extent().help_split(status & SIZE_MASK); } // Loop while the next node is marked for removal. while next.is_superfluous(level) { // The next node is marked for removal; try to freeze its predecessor. let (prev, result) = next.try_freeze(self, level); // Point the current link at the latest predecrssor of the next link. self = prev; // Check if the current link is frozen. if result & FREEZE_FLAG != 0 { // If so, help remove the next link. next.help_freeze(&self); } // Acquire a reference to the new next link in the level list. next = self.acquire_next(); } // Check if the key of the extent of the next link still precedes // the search key. if next.key() <= key { // If so, step into the next link. self = next; // And acquire a reference to the new current link's successor. next = self.acquire_next(); } } // The key of the extent of the next link now exceeds the search key; // return the consecutive links, which bound the search key. (self, next) } /// Inserts this link into the list at `level`, between the `prev` link and /// the `next` link; returns the predecessor to the inserted link, and the /// inserted link itself. unsafe fn insert(self, mut prev: AddrLinkRef, mut next: AddrLinkRef, level: usize) -> (AddrLinkRef, AddrLinkRef) { // Check if this link is already inserted into the list. if prev.key() == self.key() { // Duplicate link. return (prev, AddrLinkRef::nil()); } // Loop until the link is inserted into the list. loop { // Load the successor to the predecessor link, synchronizing with // list mutations. let prev_succ = (*prev.ptr).succ.load(SeqCst); // Check if the successor to the predecessor link is frozen. if prev_succ & FREEZE_FLAG != 0 { // If so, borrow the predecessor's reference to its successor; // safe because the predecessor is frozen. let succ = AddrLinkRef::from_raw((prev_succ & ADDR_MASK) as *mut AddrLink); // Help remove the predecessor's successor. succ.help_freeze(&prev); // Discard the borrowed successor reference. mem::forget(succ); } else { // Set the successor of this link to the next link in this list; // no need to synchronize because this new link is not aliased. (*self.ptr).succ.store(next.ptr as usize, Relaxed); // Try to set the successor of the predecessor link to this link, // synchronizing with list mutations; linearization point for // link insertion. match (*prev.ptr).succ.compare_exchange(next.ptr as usize, self.ptr as usize, SeqCst, SeqCst) { // Link successfully inserted; return the new link bounds. Ok(_) => return (prev, self), // Failed to insert link. Err(result) => { // Check if the predecessor link was frozen. if result & FREEZE_FLAG != 0 { // If so, borrow the predecessor's reference to its successor; // safe because the predecessor is frozen. let succ = AddrLinkRef::from_raw((result & ADDR_MASK) as *mut AddrLink); // Help remove the predecessor's successor. succ.help_freeze(&prev); // Discard the borrowed successor reference. mem::forget(succ); } // Loop while the sucessor to the predecessor link is // marked for removal, synchronizing with list mutations. while (*prev.ptr).succ.load(SeqCst) & REMOVE_FLAG != 0 { // Acquire a reference to the predecessor of the predecessor link. prev = prev.acquire_back(); } }, } } // Get the links that bound the search address in the level list. let (new_prev, new_next) = prev.search_right(self.key(), level); // Update the predecessor link. prev = new_prev; // Update the successor link. next = new_next; // Check if this link is already inserted into the list. if prev.key() == self.key() { // Duplicate link. return (prev, AddrLinkRef::nil()); } } } /// Removes this link from the `level` list, following the `prev` link. unsafe fn remove(self, mut prev: AddrLinkRef, level: usize) -> AddrLinkRef { // Try to freeze the predecessor of this link. let (new_prev, result) = self.try_freeze(prev, level); // Update to the latest predecessor of this link. prev = new_prev; // Check if the predecessor link is frozen. if result & FREEZE_FLAG != 0 { // If so, help remove this link. self.help_freeze(&prev); } // Check if this link was not in the list. if result & REMOVE_FLAG == 0 { // Return nil to indicate that no link was removed. return AddrLinkRef::nil(); } // Return a pointer to the removed link. return self; } /// Attempts to set the freeze bit on the successor pointer of the predecessor /// of this link, freezing the predecessor from concurrent mutation while /// the node in which this link resides is removed. Returns the latest /// predecessor to this link, and a bit mask with the freeze bit set if the /// predecessor is frozen, and with the remove flag set if this operation /// is the one that transitioned the predecessor into the frozen state. #[inline] unsafe fn try_freeze(&self, mut prev: AddrLinkRef, level: usize) -> (AddrLinkRef, usize) { loop { // Check if the predecessor is already frozen. if (*prev.ptr).succ.load(SeqCst) == self.ptr as usize & FREEZE_FLAG { // Already frozen. return (prev, FREEZE_FLAG); } // Try to set the freeze bit on the successor pointer of the predecessor link; // linearization point for successor removal. match (*prev.ptr).succ.compare_exchange(self.ptr as usize, self.ptr as usize | FREEZE_FLAG, SeqCst, SeqCst) { // Successfully frozen. Ok(_) => return (prev, FREEZE_FLAG | REMOVE_FLAG), // Failed to set freeze bit. Err(result) => { // Check if this link is still the successor to the precedessor, // and if the successor pointer to the predecessor link has its // freeze bit set. if result == self.ptr as usize | FREEZE_FLAG { // Predecessor was concurrently frozen; return the address // of the predecessor link, with the freeze bit set. return (prev, FREEZE_FLAG); } // Loop while the sucessor to the predecessor link is // marked for removal, synchronizing with list mutations. while (*prev.ptr).succ.load(SeqCst) & REMOVE_FLAG != 0 { // Acquire a reference to the predecessor of the predecessor link. prev = prev.acquire_back(); } // Successor to the predecessor concurrently changed; // search for the links that bound the key // "infinitessimally" smaller than this key. let (new_prev, new_next) = prev.search_right(self.glb(), level); // Update to the latest predecessor link. prev = new_prev; // Check if this link is no longer the successor to the // predecessor of this key. if new_next.ptr != self.ptr { // This link was concurrently removed; return the address // of the predecessor link. return (prev, 0); } }, } } } /// Attempts to mark and remove this link, which is a successor of the `prev` link. #[inline] unsafe fn help_freeze(&self, prev: &AddrLinkRef) { // Store a weak reference to the predecessor link in the back pointer // of this link, synchronizing with back pointer reads. (*self.ptr).back.store(prev.ptr, Release); // Check if this link hasn't yet been marked for removal. if (*self.ptr).succ.load(SeqCst) & REMOVE_FLAG == 0 { // Try to mark this link for removal. self.try_remove(); } // Help physically remove this link. self.help_remove(prev); } /// Attempts to mark this link for removal. #[inline] unsafe fn try_remove(&self) { // Loops until this link is marked for removal. loop { // Load the address of the successor to this link, // synchronized by subsequent CAS. let next = (*self.ptr).succ.load(Relaxed) & ADDR_MASK; // Try to set the remove flag of the successor pointer; // linearization point for logical link removal. match (*self.ptr).succ.compare_exchange(next, next | REMOVE_FLAG, SeqCst, SeqCst) { // Successfully marked. Ok(_) => break, // Failed to set remove flag. Err(result) => { // Check if this link is frozen. if result & FREEZE_FLAG != 0 { // Borrow this link's reference to its successor; // safe because this link is frozen. let succ = AddrLinkRef::from_raw((result & ADDR_MASK) as *mut AddrLink); // Help remove the successor of the successor of this link. succ.acquire_next().help_freeze(self); // Discard the borrowed successor reference. mem::forget(succ); } // Check if this link is marked. if result & REMOVE_FLAG != 0 { // Link already marked for removal. break; } }, } } } /// Attempts to physically remove this link from the list. #[inline] unsafe fn help_remove(&self, prev: &AddrLinkRef) { // Load the successor of this link, synchronizing with list mutation. let next = (*self.ptr).succ.load(SeqCst) & ADDR_MASK; // Try to set the successor of the predecessor link to the successor of // this link; linearization point for physical link removal. let _ = (*prev.ptr).succ.compare_exchange(self.ptr as usize | FREEZE_FLAG, next, SeqCst, Relaxed); } /// Consumes this link reference, returning a raw, uncounted pointer to the /// extent in which this link resides. unsafe fn into_extent(self) -> *mut ExtentNode { self.extent() } } impl Clone for AddrLinkRef { #[inline] fn clone(&self) -> AddrLinkRef { unsafe { self.extent().retain(); AddrLinkRef::from_raw(self.ptr) } } } impl Drop for AddrLinkRef { #[inline] fn drop(&mut self) { unsafe { self.extent().release(); } } } impl SizeList { /// Returns a pointer to the extent in which this list resides. #[inline] unsafe fn extent(&self) -> *mut ExtentNode { (self as *const SizeList as usize & EXTENT_ADDR_MASK) as *mut ExtentNode } /// Inserts a `node` into this skip list, returning a reference to the base /// link of the inserted node, or `nil` if the node was already found in /// the list. unsafe fn insert(&self, node: SizeNodeRef) -> SizeLinkRef { // Find a pair of references to consecutive base links whose extent // keys bound the key of the extent of the inserted node. The returned // next reference will be nil if the key of the extent of the inserted // node is greater than the keys of the extents of all links in the // base level list. let (mut prev, mut next) = self.search_to_level(node.key(), 0); // Check if this node is already in the list. if prev.key() == node.key() { panic!("duplicate node"); } // Generate a random height for the inserted node. let height = self.random_height(); // Get a pointer to the link at the base level of the inserted node, // stealing the given node's reference. let base = SizeLinkRef::from_raw((*node.ptr).levels.as_ptr() as *mut SizeLink); // Discard the node, whose reference we stole. mem::forget(node); // Start with the base link. let mut link = base.clone(); // Of the base level list. let mut level = 0; // Loop until `height` link levels have been inserted into the skip list. loop { // Insert this node's link for the current level into the level list, // between the links that bound the address of the extent of the // inserted node.. let (new_prev, result) = link.clone().insert(prev, next, level); // Update to the latest predecessor link. prev = new_prev; // Check if the insert failed due to a duplicate base link. if result.is_nil() && level == 0 { // Propagate the insert failure. return SizeLinkRef::nil(); } // Check if the inserted base link has already become superfluous. if (*base.ptr).succ.load(SeqCst) & REMOVE_FLAG != 0 { // Check if the current link was inserted, and isn't the base link. if result.ptr == link.ptr && link.ptr != base.ptr { // If so, remove the superfluous link. link.remove(prev, level); } // Return the superfluous base link. return base; } // Increment the link level. level = level.wrapping_add(1); // Check if the new link level exceeds the chosen height for the // inserted node. if level > height { // All desired levels have been inserted; return the base link. return base; } // Ascend to the next higher level link. link.ascend(); // Find a pair of pointers to consecutive links in the current // level whose extent addresses bound the address of the extent of // the inserted node. The returned next pointer will be null if the // address of the extent of the inserted node is greater than the // addresses of the extents of all links in the current level list. let (new_prev, new_next) = self.search_to_level(link.key(), level); // Recurse into the lower bound link of the current level list. prev = new_prev; // And the upper bound link of the current level list. next = new_next; } } /// Removes the first node from the least with a key greater than a given /// greatest lower bound (`glb`) key, returning a reference to the removed /// node's base link, or `nil` of no node with a key greater than `glb` was /// found in the list. unsafe fn take_next(&self, glb: SizeKey) -> SizeLinkRef { loop { // Find a pair consecutive base link references whose upper bound key // is greater than the given greatest lower bound key. let (prev, link) = self.search_to_level(glb, 0); // Check if no node was found whose key is greater than the given // greatest lower bound key. if link.is_nil() { // Return nil to indicate that no node was found. return link; } // Load the status field of the extent in which this link resides; // synchronized by subsequent CAS. let mut old_status = (*self.extent()).status.load(Relaxed); // Loop until the remove flag is set. loop { // Set the remove flag on the status field. let new_status = old_status | REMOVE_FLAG; // Try to update the status field of the extent in which this link resides, // synchronizing with other list mutations; linearization point for skip // list removal. match (*self.extent()).status.compare_exchange(old_status, new_status, SeqCst, Relaxed) { // CAS succeeded. Ok(_) => break, // CAS failed; try again with the latest status. Err(status) => old_status = status, } } // Remove the node from the base level list. let result = link.remove(prev, 0); // Check if the removal of the link from the base level list failed. if result.is_nil() { // The node was concurrently removed; try again. continue; } // Delete the links at the higher levels of the node. self.search_to_level(result.key(), 1); // Return a pointer to the base link of the successfully removed node. return result; } } /// Returns two consecutive links in the `target_level` list, with the /// extent of the first link having a key less than or equal to the search /// `key`, and the extent of the second link having a key strictly greater /// than the search `key`. Returns `nil` for the second link if the search /// `key` is greater than or equal to the keys of all nodes in the list. unsafe fn search_to_level(&self, key: SizeKey, target_level: usize) -> (SizeLinkRef, SizeLinkRef) { // Get the head link and level of the highest level non-empty list // whose level is greater than or equal to the target level. let (mut link, mut level) = self.find_start(target_level); // Search the skip list down to the target level. loop { // Search for bounding links on the current level. let (prev, next) = link.search_right(key, level); // Step into the predecessor link on the current level. link = prev; // Check if we're still above the target level. if level > target_level { // Descend to the next lower level link. link.descend(); // Decrement the level index. level = level.wrapping_sub(1); } else { // Return bounding links on the target level. return (link, next); } } } /// Returns the head link and level of the highest level non-empty list /// whose level is greater than or equal to the minimum start `level`. #[inline] unsafe fn find_start(&self, mut level: usize) -> (SizeLinkRef, usize) { // Get a pointer to the head link for the minimum start level. let mut link = self.head.levels.as_ptr().wrapping_add(level) as *mut SizeLink; // Loop until the next higher level list is empty, or the top level is reached. loop { // Get a pointer to the head link for the next highest level list. let up_link = link.wrapping_add(1); // Load the address of the next link in the next highest level list, // synchronizing with level list mutations. let up_next = ((*up_link).succ.load(SeqCst) & ADDR_MASK) as *mut SizeLink; // Check if the next highest level list is empty. if up_next.is_null() { // The current level is the highest non-empty level. break; } // Step to the head link of the next highest level list. link = up_link; // Increment the level index. level = level.wrapping_add(1); // Check if the new level is as high as the skip list goes. if level == MAX_LEVEL { // Can't go any higher. break; } } // Acquire a reference the head extent in which this list resides. (*self.extent()).refcount.fetch_add(1, Acquire); // Return the head link and level of the highest level non-empty list. (SizeLinkRef::from_raw(link), level) } /// Returns a pseudo-random skip node height, ranging from 0 to 31, inclusive. unsafe fn random_height(&self) -> usize { // Load the current PRNG state. let mut old_seed = self.head.seed.load(Relaxed); // Loop until a new pseudo-random number is generated. loop { // Compute the next pseudo-random number, using a simple xorshit PRNG. let mut new_seed = old_seed ^ old_seed << 13; new_seed = new_seed ^ new_seed >> 17; new_seed = new_seed ^ new_seed << 5; // Try to update the PRNG state. match self.head.seed.compare_exchange_weak(old_seed, new_seed, Relaxed, Relaxed) { // CAS succeeded. Ok(_) => { // Truncate the pseudo-random number to 32 bits. let seed = new_seed as u32; // Check if the highest and/or lowest bits are unset. if seed & 0x80000001 != 0x80000001 { // Return the highest probability skip node height. return 0; } // Return the number of consecutive trailing zeros, between 1 and 31. return (seed & 0xFFFFFFFE).trailing_zeros() as usize }, // CAS failed; update the PRNG state and try again. Err(seed) => old_seed = seed, } } } } impl SizeNodeRef { /// Returns a new reference to a skip list node from a raw pointer. #[inline] unsafe fn from_raw(ptr: *mut SizeNode) -> SizeNodeRef { SizeNodeRef { ptr: ptr } } /// Returns a pointer to the extent in which this node resides. #[inline] fn extent(&self) -> *mut ExtentNode { (self.ptr as usize & EXTENT_ADDR_MASK) as *mut ExtentNode } /// Returns the sort key used to order this node. #[inline] fn key(&self) -> SizeKey { unsafe { let extent = self.extent(); if !extent.is_null() { ((*extent).size, extent as usize) } else { (usize::MAX, usize::MAX) } } } } impl Clone for SizeNodeRef { #[inline] fn clone(&self) -> SizeNodeRef { unsafe { self.extent().retain(); SizeNodeRef::from_raw(self.ptr) } } } impl Drop for SizeNodeRef { #[inline] fn drop(&mut self) { unsafe { self.extent().release(); } } } impl SizeLinkRef { /// Returns the end of list sentinel. #[inline] fn nil() -> SizeLinkRef { SizeLinkRef { ptr: ptr::null_mut() } } /// Returns a new reference to a skip list link from a raw pointer. #[inline] unsafe fn from_raw(ptr: *mut SizeLink) -> SizeLinkRef { SizeLinkRef { ptr: ptr } } /// Updates this reference to point to the node's next higher level link. #[inline] unsafe fn ascend(&mut self) { self.ptr = self.ptr.wrapping_add(1); } /// Updates this reference to point to the node's next lower level link. #[inline] unsafe fn descend(&mut self) { self.ptr = self.ptr.wrapping_sub(1); } /// Returns `true` if this is the `nil` end of list sentinel. #[inline] fn is_nil(&self) -> bool { self.ptr.is_null() } /// Returns a pointer to the extent in which this link resides. #[inline] fn extent(&self) -> *mut ExtentNode { (self.ptr as usize & EXTENT_ADDR_MASK) as *mut ExtentNode } /// Returns the address of the extent in which this link resides. #[inline] fn addr(&self) -> usize { if !self.is_nil() { self.extent() as usize } else { usize::MAX } } /// Returns the sort key used to order this link. #[inline] fn key(&self) -> (usize, usize) { unsafe { let extent = self.extent(); if !extent.is_null() { ((*extent).size, extent as usize) } else { (usize::MAX, usize::MAX) } } } /// Returns the greatest key that precedes this link's key. #[inline] fn glb(&self) -> (usize, usize) { unsafe { let extent = self.extent(); if !extent.is_null() { ((*extent).size.wrapping_sub(1), extent as usize) } else { (usize::MAX, usize::MAX) } } } /// Returns `true` if the node in which this link resides is marked for removal. #[inline] unsafe fn is_superfluous(&self, level: usize) -> bool { !self.is_nil() && (*self.ptr.wrapping_sub(level)).succ.load(SeqCst) & REMOVE_FLAG != 0 } /// Returns the insertion status of the node in which this link resides. #[inline] unsafe fn status(&self) -> usize { if !self.is_nil() { (*self.extent()).status.load(Acquire) } else { 0 } } /// Returns a reference to the successor of this link, incrementing its /// reference count. #[inline] unsafe fn acquire_next(&self) -> SizeLinkRef { // Loop until a reference is acquired to the successor of this link. loop { // Load the address of the successor to this link in the level list, // synchronizing with level list mutations. let next = SizeLinkRef::from_raw(((*self.ptr).succ.load(SeqCst) & ADDR_MASK) as *mut SizeLink); // Check if the next link is the end of list sentinel. if next.is_nil() { // Return a reference to the end of list sentinel. return next; } // Increment the reference count of the extent of the next link, // synchronizing with reference releases. (*next.extent()).refcount.fetch_add(1, Acquire); // Check if the successor to this link remains unchanged, // synchronizing with level list mutations. if next.ptr == ((*self.ptr).succ.load(SeqCst) & ADDR_MASK) as *mut SizeLink { // Return the acquired reference to the next link. return next; } else { // Successor changed; release the reference we acquired to the // previous successor, and try again. mem::drop(next); } } } /// Returns a reference to the predecessor of this marked link, /// incrementing its reference count. #[inline] unsafe fn acquire_back(&self) -> SizeLinkRef { // Loop until a reference is acquired to the predecessor of this link. loop { // Load the address of the predecessor to this link in the level list, // synchronizing with back reference releases. let prev = SizeLinkRef::from_raw((*self.ptr).back.load(Acquire)); // The back pointer must not be null. debug_assert!(!prev.ptr.is_null()); // The back pointer cannot be null. assume(!prev.ptr.is_null()); // Increment the reference count of the extent of the prev link, // synchronizing with reference releases. (*prev.extent()).refcount.fetch_add(1, Acquire); // Check if the predecessor to this link remains unchanged, // synchronizing with back reference releases. if prev.ptr == (*self.ptr).back.load(Acquire) { // Return the acquired reference to the prev link. return prev; } else { // Successor changed; release the reference we acquired to the // previous predecessor, and try again. mem::drop(prev); } } } /// Returns two consecutive links in the list at `level`, with the extent /// of the first link having a key less than or equal to the search key, /// and the extent of the second link having a key strictly greater than /// the search `key`. Assumes that the address of the extent of this link /// precedes the search address. unsafe fn search_right(mut self, key: SizeKey, level: usize) -> (SizeLinkRef, SizeLinkRef) { // Acquire a reference to the next link in the level list. let mut next = self.acquire_next(); // Loop while the key of the extent of the next link does not exceed the search key. while !next.is_nil() && next.key() <= key { // Load the insertion status of the extent in which the next link resides. let status = next.status(); // Check if the extent is flagged for merging or splitting. if status & MERGE_FLAG != 0 { // Help merge the extent in which this link resides with its successor. next.extent().help_merge(); } else if status & SPLIT_FLAG != 0 { // Help split the extent in which this link resides at the size boundary // enocded in the high order bits of the status field. next.extent().help_split(status & SIZE_MASK); } // Loop while the next node is marked for removal. while next.is_superfluous(level) { // The next node is marked for removal; try to freeze its predecessor. let (prev, result) = next.try_freeze(self, level); // Point the current link at the latest predecrssor of the next link. self = prev; // Check if the current link is frozen. if result & FREEZE_FLAG != 0 { // If so, help remove the next link. next.help_freeze(&self); } // Acquire a reference to the new next link in the level list. next = self.acquire_next(); } // Check if the key of the extent of the next link still precedes // the search key. if next.key() <= key { // If so, step into the next link. self = next; // And acquire a reference to the new current link's successor. next = self.acquire_next(); } } // The key of the extent of the next link now exceeds the search key; // return the consecutive links, which bound the search key. (self, next) } /// Inserts this link into the list at `level`, between the `prev` link and /// the `next` link; returns the predecessor to the inserted link, and the /// inserted link itself. unsafe fn insert(self, mut prev: SizeLinkRef, mut next: SizeLinkRef, level: usize) -> (SizeLinkRef, SizeLinkRef) { // Check if this link is already inserted into the list. if prev.key() == self.key() { // Duplicate link. return (prev, SizeLinkRef::nil()); } // Loop until the link is inserted into the list. loop { // Load the successor to the predecessor link, synchronizing with // list mutations. let prev_succ = (*prev.ptr).succ.load(SeqCst); // Check if the successor to the predecessor link is frozen. if prev_succ & FREEZE_FLAG != 0 { // If so, borrow the predecessor's reference to its successor; // safe because the predecessor is frozen. let succ = SizeLinkRef::from_raw((prev_succ & ADDR_MASK) as *mut SizeLink); // Help remove the predecessor's successor. succ.help_freeze(&prev); // Discard the borrowed successor reference. mem::forget(succ); } else { // Set the successor of this link to the next link in this list; // no need to synchronize because this new link is not aliased. (*self.ptr).succ.store(next.ptr as usize, Relaxed); // Try to set the successor of the predecessor link to this link, // synchronizing with list mutations; linearization point for // link insertion. match (*prev.ptr).succ.compare_exchange(next.ptr as usize, self.ptr as usize, SeqCst, SeqCst) { // Link successfully inserted; return the new link bounds. Ok(_) => return (prev, self), // Failed to insert link. Err(result) => { // Check if the predecessor link was frozen. if result & FREEZE_FLAG != 0 { // If so, borrow the predecessor's reference to its successor; // safe because the predecessor is frozen. let succ = SizeLinkRef::from_raw((result & ADDR_MASK) as *mut SizeLink); // Help remove the predecessor's successor. succ.help_freeze(&prev); // Discard the borrowed successor reference. mem::forget(succ); } // Loop while the sucessor to the predecessor link is // marked for removal, synchronizing with list mutations. while (*prev.ptr).succ.load(SeqCst) & REMOVE_FLAG != 0 { // Acquire a reference to the predecessor of the predecessor link. prev = prev.acquire_back(); } }, } } // Get the links that bound the search address in the level list. let (new_prev, new_next) = prev.search_right(self.key(), level); // Update the predecessor link. prev = new_prev; // Update the successor link. next = new_next; // Check if this link is already inserted into the list. if prev.key() == self.key() { // Duplicate link. return (prev, SizeLinkRef::nil()); } } } /// Removes this link from the `level` list, following the `prev` link. unsafe fn remove(self, mut prev: SizeLinkRef, level: usize) -> SizeLinkRef { // Try to freeze the predecessor of this link. let (new_prev, result) = self.try_freeze(prev, level); // Update to the latest predecessor of this link. prev = new_prev; // Check if the predecessor link is frozen. if result & FREEZE_FLAG != 0 { // If so, help remove this link. self.help_freeze(&prev); } // Check if this link was not in the list. if result & REMOVE_FLAG == 0 { // Return nil to indicate that no link was removed. return SizeLinkRef::nil(); } // Return a pointer to the removed link. return self; } /// Attempts to set the freeze bit on the successor pointer of the predecessor /// of this link, freezing the predecessor from concurrent mutation while /// the node in which this link resides is removed. Returns the latest /// predecessor to this link, and a bit mask with the freeze bit set if the /// predecessor is frozen, and with the remove flag set if this operation /// is the one that transitioned the predecessor into the frozen state. #[inline] unsafe fn try_freeze(&self, mut prev: SizeLinkRef, level: usize) -> (SizeLinkRef, usize) { loop { // Check if the predecessor is already frozen. if (*prev.ptr).succ.load(SeqCst) == self.ptr as usize & FREEZE_FLAG { // Already frozen. return (prev, FREEZE_FLAG); } // Try to set the freeze bit on the successor pointer of the predecessor link; // linearization point for successor removal. match (*prev.ptr).succ.compare_exchange(self.ptr as usize, self.ptr as usize | FREEZE_FLAG, SeqCst, SeqCst) { // Successfully frozen. Ok(_) => return (prev, FREEZE_FLAG | REMOVE_FLAG), // Failed to set freeze bit. Err(result) => { // Check if this link is still the successor to the precedessor, // and if the successor pointer to the predecessor link has its // freeze bit set. if result == self.ptr as usize | FREEZE_FLAG { // Predecessor was concurrently frozen; return the address // of the predecessor link, with the freeze bit set. return (prev, FREEZE_FLAG); } // Loop while the sucessor to the predecessor link is // marked for removal, synchronizing with list mutations. while (*prev.ptr).succ.load(SeqCst) & REMOVE_FLAG != 0 { // Acquire a reference to the predecessor of the predecessor link. prev = prev.acquire_back(); } // Successor to the predecessor concurrently changed; // search for the links that bound the key // "infinitessimally" smaller than this key. let (new_prev, new_next) = prev.search_right(self.glb(), level); // Update to the latest predecessor link. prev = new_prev; // Check if this link is no longer the successor to the // predecessor of this key. if new_next.ptr != self.ptr { // This link was concurrently removed; return the address // of the predecessor link. return (prev, 0); } }, } } } /// Attempts to mark and remove this link, which is a successor of the `prev` link. #[inline] unsafe fn help_freeze(&self, prev: &SizeLinkRef) { // Store a weak reference to the predecessor link in the back pointer // of this link, synchronizing with back pointer reads. (*self.ptr).back.store(prev.ptr, Release); // Check if this link hasn't yet been marked for removal. if (*self.ptr).succ.load(SeqCst) & REMOVE_FLAG == 0 { // Try to mark this link for removal. self.try_remove(); } // Help physically remove this link. self.help_remove(prev); } /// Attempts to mark this link for removal. #[inline] unsafe fn try_remove(&self) { // Loops until this link is marked for removal. loop { // Load the address of the successor to this link, // synchronized by subsequent CAS. let next = (*self.ptr).succ.load(Relaxed) & ADDR_MASK; // Try to set the remove flag of the successor pointer; // linearization point for logical link removal. match (*self.ptr).succ.compare_exchange(next, next | REMOVE_FLAG, SeqCst, SeqCst) { // Successfully marked. Ok(_) => break, // Failed to set remove flag. Err(result) => { // Check if this link is frozen. if result & FREEZE_FLAG != 0 { // Borrow this link's reference to its successor; // safe because this link is frozen. let succ = SizeLinkRef::from_raw((result & ADDR_MASK) as *mut SizeLink); // Help remove the successor of the successor of this link. succ.acquire_next().help_freeze(self); // Discard the borrowed successor reference. mem::forget(succ); } // Check if this link is marked. if result & REMOVE_FLAG != 0 { // Link already marked for removal. break; } }, } } } /// Attempts to physically remove this link from the list. #[inline] unsafe fn help_remove(&self, prev: &SizeLinkRef) { // Load the successor of this link, synchronizing with list mutation. let next = (*self.ptr).succ.load(SeqCst) & ADDR_MASK; // Try to set the successor of the predecessor link to the successor of // this link; linearization point for physical link removal. let _ = (*prev.ptr).succ.compare_exchange(self.ptr as usize | FREEZE_FLAG, next, SeqCst, Relaxed); } } impl Clone for SizeLinkRef { #[inline] fn clone(&self) -> SizeLinkRef { unsafe { self.extent().retain(); SizeLinkRef::from_raw(self.ptr) } } } impl Drop for SizeLinkRef { #[inline] fn drop(&mut self) { unsafe { self.extent().release(); } } }